
Hans-Petter Halvorsen

https://www.halvorsen.blog

Python MQTT, SQL Server
and Microsoft Azure

• Introduction
• MQTT
• SQL Server
• Python and SQL Server
• Microsoft Azure
• Databases in Microsoft Azure
• Code Examples

Contents

Hans-Petter Halvorsen

https://www.halvorsen.blog

Introduction

Table of Contents

• We have N Computers/Devices that read data from different Sensors, e.g.,
Temperature Sensors, etc.

• The Data from all the Sensors should be stored in a Database located on the
Internet/The Cloud

• Problem:
– These Computers/Devices have no access to the Database
– In order to get access to the Database, we need to open the Firewall for each of those

Computers/Devices, and that is of course not recommended due to security issues, and
it can be hundreds or thousands of computers

• Solution:
– We use MQTT as the middle tier. MQTT is “Internet-friendly“ because it uses standard

HTTP
– The Computers/Devices send Data to a MQTT Broker
– Then a dedicated Computer (that has access to the Database) Subscribe on the Data and

Forward the Data to the Database

Introduction

System Overview
Python
Script

Database

Temperature
Sensor

Internet/The Cloud

MQTT Broker

Publish Data

Python
Script

Subscr
ibe fo

r D
ata

Python
Script

Temperature
Sensor

Publish Data

N Computers/Devices

#1

#2

Hans-Petter Halvorsen

https://www.halvorsen.blog

MQTT

Table of Contents

• MQTT is a Communication Protocol popular in Internet of
Things (IoT) Applications

• https://mqtt.org
• You can use or implement MQTT in all the most popular

Programming environments
• MQTT can be used on all the popular platforms like

Windows, macOS, Linux, Arduino, Raspberry Pi
• You can use an existing API, or you can implement and

use the MQTT protocol from scratch
• We will Python in this Tutorial

MQTT

https://mqtt.org/

MQTT Scenario
MQTT Publishers

MQTT Broker

MQTT Subscribers

Sensors

MQTT Topics
• Data in MQTT are Published to Topics
• Topics are made up of one or more topic levels,

separated by a forward slash
Example:
Sensor/Temperature/Kitchen
• Topics are used to organize the data
• Topics are case sensitive
• Topics don’t have to be pre-registered at the broker

Subscribe on Topics - Wildcards

Sensor

Temperature Humidity

Livingroom LivingroomKitchen Bathroom

Wildcards: Sensor/Temperature/#

HiveMQ Cloud
https://www.hivemq.com

https://www.hivemq.com/

Using MQTT in Python
• The most used MQTT Python Library is paho-

mqtt
• We need to install the paho-mqtt Python

Library using pip

We need to install the paho-mqtt Python Library. You
can use pip, or as here, the Thonny Python Editor has
an easy way to install Python Libraries from a GUI

Hans-Petter Halvorsen

https://www.halvorsen.blog

SQL Server

Table of Contents

• Oracle
• MySQL
• MariaDB
• Sybase
• Microsoft Access
• Microsoft SQL Server
• ... (we have hundreds different Database

Systems)

Database Systems

• SQL Server consists of a Database Engine and a
Management Studio.

• The Database Engine has no graphical interface -
it is just a service running in the background of
your computer (preferable on the server).

• The Management Studio is graphical tool for
configuring and viewing the information in the
database. It can be installed on the server or on
the client (or both).

SQL Server

SQL Server
• SQL Server Express
– Free version of SQL Server that has all we need for the

exercises in this Tutorial
• SQL Server Express consist of 2 parts (separate

installation packages):
– SQL Server Express
– SQL Server Management Studio (SSMS) – This software can

be used to create Databases, create Tables, Insert/Retrieve
or Modify Data, etc.

• SQL Server Express Installation:
https://youtu.be/hhhggAlUYo8

https://youtu.be/hhhggAlUYo8

SQL Server Management Studio

Write your Query here

The result from your Query

Your Database

Your
Tables

Your SQL Server

2

3

4

5

1

Hans-Petter Halvorsen

https://www.halvorsen.blog

Python
and SQL Server

Table of Contents

• Python is a fairly old Programming Language (1991)
compared to many other Programming Languages like C#
(2000), Swift (2014), Java (1995), PHP (1995).

• Python has during the last 10 years become more and more
popular.

• Today, Python has become one of the most popular
Programming Languages.

Software used in this Tutorial:
• Anaconda Distribution (Python + most used

Libraries/Packages are included)
• Spyder Python editor (included with Anaconda Distribution)

Python

• There are several python SQL drivers available:
– pyodbc
– pymssql

• These Drivers are not made made Microsoft but the
Python Community.

• However, Microsoft places its testing efforts and its
confidence in pyodbc driver.

• Microsoft contributes to the pyODBC open-source
community and is an active participant in the
repository at GitHub

https://docs.microsoft.com/sql/connect/python/python-driver-for-sql-server

Python Drivers for SQL Server

https://docs.microsoft.com/sql/connect/python/python-driver-for-sql-server

• pyodbc is an open-source Python
module that can access ODBC
databases, e.g., SQL Server
• https://pypi.org/project/pyodbc/
• Installation: pip install pyodbc

pyodbc

https://pypi.org/project/pyodbc/

pyodbc

pip install pyodbc

Connect to Database from Python

import pyodbc

driver = "{ODBC Driver 17 for SQL Server}"
server = "xxxxxx"
database = "xxxxx"
username = "xxxxx"
password = "xxxxxx"
conn = pyodbc.connect("DRIVER=" + driver

+ ";SERVER=" + server
+ ";DATABASE=" + database
+ ";UID=" + username
+ ";PWD=" + password)

The newest and
recommend driver

Connect to Database from Python
import pyodbc

driver = "{ODBC Driver 17 for SQL Server}"
server = "TESTPC\\SQLEXPRESS"
database = "BOOKSTORE"
username = "sa"
password = "Test123"
conn = pyodbc.connect("DRIVER=" + driver

+ ";SERVER=" + server
+ ";DATABASE=" + database
+ ";UID=" + username
+ ";PWD=" + password)

Example:

Here is the built-in “sa” user (System Administrator) used to connect to the Database. In
general, you should use another user than the sa user. The sa user is used here for
simplicity. You can easily create a new user in SQL Server Management Studio

If Server is on your local PC,
you can use LOCALHOSTServer Name

Instance Name (you can have
multiple instances of SQL Server
on the same computer)

Hans-Petter Halvorsen

https://www.halvorsen.blog

Microsoft Azure

Table of Contents

• Microsoft Azure is a Cloud Platform from
Microsoft
• You could say it is “Windows running in

the Cloud”
• Here you can host Databases, Web

Applications, Virtual Machines, etc.
• Azure Portal:

https://portal.azure.com

Microsoft Azure

https://portal.azure.com/

Hans-Petter Halvorsen

https://www.halvorsen.blog

Databases in
Microsoft Azure

Table of Contents

Configure Database in Azure

Create Table
We will use SQL Server Management Studio and connect to the Azure Database:

Azure Data Studio

• An alternative to SQL Server Management Studio is
Azure Data Studio.

• It is a simplified version of SQL Server Management
Studio

• Azure Data Studio is also cross-platform, meaning it
is also working on macOS and Linux in addition to
Windows

Azure Query Editor

A 3.alternative is the Query Editor
in the Microsoft Azure Portal

Firewall
We need to give access to the computers running the Python Scripts

Hans-Petter Halvorsen

https://www.halvorsen.blog

Code Examples

Table of Contents

System Overview
Python
Script

Database

Temperature
Sensor

Internet/The Cloud

MQTT Broker

Publish Data

Python
Script

Subscr
ibe fo

r D
ata

Python
Script

Temperature
Sensor

Publish Data

N Computers/Devices

#1

#2

MQTT Broker

def GetBroker():
brokerAddress = "xxxxxxxxxx.s2.eu.hivemq.cloud"
userName = "xxxxxx"
passWord = "xxxxxx"

return brokerAddress, userName, passWord

The MQTT Broker Data is put into a Python File called
“broker.py”:

broker.py

Connection String

def GetConnectionStringAzure():
driver = "{ODBC Driver 17 for SQL Server}"
server = "xxx.database.windows.net"
database = "LOGGINGSYSTEM"
username = "xxxxxx"
password = "xxxxxxx"

connectionString = "DRIVER=" + driver + ";SERVER=" + server + ";DATABASE="
+ database + ";UID=" + username + ";PWD=" + password

return connectionString

The Connection string has been put in a separate
Python File called “database.py”:

database.py

import paho.mqtt.client as mqtt
import random
import time
import broker

#MQTT Settings
brokerAddress, userName, passWord = broker.GetBroker()
topic = "Sensor/Temperature/Livingroom"

min = 20
max = 30

The callback for when the client receives a CONNACK response from the server.
def on_connect(client, userdata, flags, rc):

if rc == 0:
print("Connected successfully")

else:
print("Connect returned result code: " + str(rc))

The callback for when a PUBLISH message is received from the server.
def on_message(client, userdata, msg):

print("Received message: " + msg.topic + " -> " + msg.payload.decode("utf-8"))

create the client
client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message

client.tls_set(tls_version=mqtt.ssl.PROTOCOL_TLS)
client.username_pw_set(userName, passWord)
client.connect(brokerAddress, 8883)

Publish Temperature Data
wait = 20
while True:

data = random.randint(min, max)
print(data)
client.publish(topic, data)
time.sleep(wait)

Publish Temperature1 to HiveMQ Cloud.py

import paho.mqtt.client as mqtt
import random
import time
import broker

#MQTT Settings
brokerAddress, userName, passWord = broker.GetBroker()
topic = "Sensor/Temperature/Kitchen"

min = 20
max = 30

The callback for when the client receives a CONNACK response from the server.
def on_connect(client, userdata, flags, rc):

if rc == 0:
print("Connected successfully")

else:
print("Connect returned result code: " + str(rc))

The callback for when a PUBLISH message is received from the server.
def on_message(client, userdata, msg):

print("Received message: " + msg.topic + " -> " + msg.payload.decode("utf-8"))

create the client
client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message

client.tls_set(tls_version=mqtt.ssl.PROTOCOL_TLS)
client.username_pw_set(userName, passWord)
client.connect(brokerAddress, 8883)

Publish Temperature Data
wait = 20
while True:

data = random.randint(min, max)
print(data)
client.publish(topic, data)
time.sleep(wait)

Publish Temperature2 to HiveMQ Cloud.py

import paho.mqtt.client as mqtt
import pyodbc
from datetime import datetime
import broker
import database

#MQTT Settings
brokerAddress, userName, passWord = broker.GetBroker()
subscribeTopic = "Sensor/Temperature/#"

Connect to Database
connectionString = database.GetConnectionStringAzure()
conn = pyodbc.connect(connectionString)
cursor = conn.cursor()

The callback for when the client receives a CONNACK response from the server.
def on_connect(client, userdata, flags, rc):

if rc == 0:
print("Connected successfully")

else:
print("Connect returned result code: " + str(rc))

The callback for when a PUBLISH message is received from the server.
def on_message(client, userdata, msg):

topic = msg.topic
measurementValue = msg.payload.decode("utf-8")
SaveToDatabase(topic, measurementValue)

def SaveToDatabase(topic, measurementValue):
print(topic + " " + measurementValue)

#Find Date and Time
now = datetime.now()
datetimeformat = "%Y-%m-%d %H:%M:%S"
measurementDateTime = now.strftime(datetimeformat)

Insert Data into Database
query = "INSERT INTO MEASUREMENTDATA (SensorName, MeasurementValue, MeasurementDateTime) VALUES (?,?,?)"
sensorName = topic
parameters = sensorName, measurementValue, measurementDateTime
cursor.execute(query, parameters)
cursor.commit()

Create the MQTT client
client = mqtt.Client()
client.on_connect = on_connect
client.on_message = on_message

client.tls_set(tls_version=mqtt.ssl.PROTOCOL_TLS)
client.username_pw_set(userName, passWord)
client.connect(brokerAddress, 8883)

client.subscribe(subscribeTopic)

client.loop_forever()

Subscribe on Topic in HiveMQ Cloud and Insert Data in SQL Server.py

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

